Reconstruction tomographique pour l'imagerie TEP à 3-photons Ecole d'Etez 2022

M.Latif^{1,2,3} Encadrement : J.Idier¹, S.Stute², T.Carlier² Comité CSI : C.Comtat⁴, B.Humbert⁵

¹LS2N - Ecole Centrale Nantes, ²CRCI2NA - CHU de Nantes ³Ecole doctorale MathSTIC ⁴BIOMAPS - Service Hospitalier Frédéric Joliot, ⁵Institut des Matériaux Jean Rouxel - Université de Nantes.

23/06/2022

1 Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

XEMIS : Grignon et al. [2007]

- Développer une caméra Compton au xénon liquide (LXe);
- Nouvelle technique d'imagerie à 3 photons (3γ) .

 $\rm FIGURE$ – $\,$ Principe de l'imagerie 3γ dans XEMIS

XEMIS : Grignon et al. [2007]

- Développer une caméra Compton au xénon liquide (LXe);
- Nouvelle technique d'imagerie à 3 photons (3γ) .

Inscrit dans l'écosystème Nantais : cyclotron ARRONAX, INSERM, CRCI2NA, LS2N.

FIGURE – Caméra **pré-clinique** XEMIS2 installée au CHU-CIMA (Crédit photo : Laboratoire Subatech)

XEMIS : Grignon et al. [2007]

- Développer une caméra Compton au xénon liquide (LXe);
- Nouvelle technique d'imagerie à 3 photons (3γ) .

Inscrit dans l'écosystème Nantais : cyclotron ARRONAX, INSERM, CRCI2NA, LS2N.

 \Rightarrow Efforts consacrés à la **conception expérimentale**.

FIGURE – Caméra **pré-clinique** XEMIS2 installée au CHU-CIMA (Crédit photo : Laboratoire Subatech)

1 Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

Tomographie par émission de positons

La TEP *classique* : Méthode d'imagerie fonctionnelle ;

• Injection d'un radiotraceur + isotope :

Désintégration β^+ : $p^* \rightarrow n + e^+ + \nu + E$; Annihilation du positon e^+ : émission de 2γ en coïncidence.

FIGURE – Annihilation β^+ - Cherry et al. [2012]

Tomographie par émission de positons

La TEP classique : Méthode d'imagerie fonctionnelle ;

• Injection d'un radiotraceur + isotope :

 $\begin{array}{ll} \mbox{Désintégration β^+}:\\ p^* \rightarrow n + e^+ + \nu + E\,;\\ \mbox{Annihilation du positon e^+}:\\ &\mbox{émission de 2γ en coïncidence.} \end{array}$

 Caméra TEP : Assemblage de cristaux scintillateurs Un couple de cristaux ⇒ Ligne de réponse (LOR); Pour chaque LOR ⇒ Comptage des coïncidences; ⇒ Incertitude sur la position : uniforme sur la LOR.

FIGURE – Caméra TEP - Cherry et al. [2012]

Tomographie par émission de positons

La TEP classique : Méthode d'imagerie fonctionnelle ;

• Injection d'un radiotraceur + isotope :

Désintégration β^+ : $p^* \rightarrow n + e^+ + \nu + E$; Annihilation du positon e^+ : émission de 2γ en **coïncidence**.

- Caméra TEP : Assemblage de cristaux scintillateurs Un couple de cristaux ⇒ Ligne de réponse (LOR); Pour chaque LOR ⇒ Comptage des coïncidences; ⇒ Incertitude sur la position : uniforme sur la LOR.
- La TEP à temps de vol (TOF) : Affiner localisation de l'émission ;
 - Mesure de différence du temps d'arrivée Δt ;
 - **Distance** / au centre de la LOR : $v = \frac{c\Delta t}{2}$;
 - Incertitude sur la position $\Rightarrow \mathcal{N}(v, \sigma^2)$.


```
FIGURE - TEP à temps de vol - Cherry et al. [2012]
```


FIGURE – Notations - Adapté de Cherry et al. [2012]

 $\Rightarrow \text{ Reconstruction tomographique} \equiv \text{problème inverse}$ Sachant les coïncidences comptées : $\boldsymbol{y} := (y_{ib})_{j \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimer la densité radioactive : $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

FIGURE – Notations - Adapté de Cherry et al. [2012]

 $\Rightarrow \text{ Reconstruction tomographique} \equiv \text{problème inverse}$ Sachant les coïncidences comptées : $\boldsymbol{y} := (y_{ib})_{j \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimer la densité radioactive : $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Modèle direct : y_{ib} sont iid. s.t.

$$y_{ib} \sim \mathcal{P}\left(\overline{y}_{ib}\right) \text{ avec } \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i$$

 $\forall i \in [\![1,I]\!], \ \forall b \in [\![1,B]\!]$

FIGURE – Notations - Adapté de Cherry et al. [2012]

 $\Rightarrow \text{ Reconstruction tomographique} \equiv \text{problème inverse}$ Sachant les coïncidences comptées : $\boldsymbol{y} := (y_{ib})_{j \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimer la densité radioactive : $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Modèle direct : y_{ib} sont iid. s.t.

$$y_{ib} \sim \mathcal{P}\left(\overline{y}_{ib}\right) \text{ avec } \overline{y}_{ib} := \sum_{j \in \llbracket 1, J \rrbracket} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i$$

 $\forall i \in [\![1,I]\!], \ \forall b \in [\![1,B]\!]$

 ${\rm Figure}$ – Types de coı̈ncidences - Cherry et al. [2012]

Algorithme MLEM

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$$

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = rgmax_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$$

 \Rightarrow Déterminer $\widehat{\lambda}^{\rm ML}$ pour un modèle probabiliste dépendant de **données latentes** ;

$$\widehat{\boldsymbol{\lambda}}^{\mathrm{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(\boldsymbol{\lambda}|\boldsymbol{y})) \right)$$

 \Rightarrow Déterminer $\widehat{\lambda}^{\mathrm{ML}}$ pour un modèle probabiliste dépendant de **données latentes** ;

$$\begin{pmatrix} \boldsymbol{\lambda}^{(0)} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket$$

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = rgmax_{oldsymbol{\lambda} \in \mathbb{R}^J_+} (\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y})))$$

 \Rightarrow Déterminer $\widehat{\lambda}^{\mathrm{ML}}$ pour un modèle probabiliste dépendant de **données latentes** ;

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

Propriétés :

- Convergence vers un $\widehat{\lambda}^{\mathrm{ML}}$;
- Positivité des densités (λ_j) obtenues.

Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ;

Scandium-44 : émetteur (β^+, γ)

 $\stackrel{44}{_{21}}\mathrm{Sc} \stackrel{\beta^+}{\longrightarrow} \stackrel{44}{_{20}}\mathrm{Ca}^* + \nu_e + e^+ \stackrel{\gamma}{\longrightarrow} \stackrel{44}{_{20}}\mathrm{Ca} + \nu_e + e^+ + \gamma$

avec $E_0 = 1.157$ MeV.

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ;

Scandium-44 : émetteur (β^+, γ)

$$\stackrel{44}{_{21}}\mathrm{Sc} \xrightarrow{\beta^+} \stackrel{44}{_{20}}\mathrm{Ca}^* +
u_e + e^+ \xrightarrow{\gamma} \stackrel{44}{_{20}}\mathrm{Ca} +
u_e + e^+ + \gamma$$

avec $E_0 = 1.157$ MeV.

FIGURE - Diffusion Compton - Adapté de Cherry et al. [2012]

XEMIS2 : caméra Compton cylindrique

 $\label{eq:continue} X \acute{e} non \ liquide: \ espace \ continu \ de \ scintillation/ionisation ;$

Scandium-44 : émetteur (β^+, γ)

$$^{44}_{21}\mathrm{Sc} \xrightarrow{\beta^+} ^{42}_{20}\mathrm{Ca}^* +
u_e + e^+ \xrightarrow{\gamma} ^{42}_{20}\mathrm{Ca} +
u_e + e^+ + \gamma$$

avec $E_0 = 1.157 \text{MeV}.$

Soit ${\cal M}$ une source de désintégration :

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ; Scandium-44 : émetteur (β^+, γ)

avec $E_0 = 1.157$ MeV.

Soit M une source de désintégration :

 \Rightarrow Cône Compton C :

 $\begin{array}{l} \text{Sommet}: \ V_1 \ \text{;} \\ \text{Axe}: \ \Delta = \overrightarrow{V_2 V_1} \ \text{;} \\ \text{Angle}: \ \theta = \arccos \left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)} \right) \ \text{;} \end{array}$

Propriété : M appartient à la surface de C.

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ;

Scandium-44 : émetteur (β^+, γ)

$$\overset{44}{_{21}}\mathrm{Sc} \quad \xrightarrow{\beta^+} \quad \overset{44}{_{20}}\mathrm{Ca}^* + \nu_e + e^+ \quad \xrightarrow{\gamma} \quad \overset{44}{_{20}}\mathrm{Ca} + \nu_e + e^+ + \gamma$$

avec $E_0 = 1.157 \text{MeV}.$

Soit ${\cal M}$ une source de désintégration :

 \Rightarrow Cône Compton C :

 $\begin{array}{l} \text{Sommet}: \ V_1 \ \text{;} \\ \text{Axe}: \ \Delta = \overrightarrow{V_2 V_1} \ \text{;} \\ \text{Angle}: \ \theta = \arccos \left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)} \right) \ \text{;} \end{array}$

Propriété : M appartient à la surface de C.

⇒ Intersection LOR/Cône : Précision dans la détection de la position de désintégration.

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ;

Scandium-44 : émetteur (β^+, γ)

$$\overset{44}{_{21}}\mathrm{Sc} \quad \overset{\beta^+}{\longrightarrow} \quad \overset{44}{_{20}}\mathrm{Ca}^* + \nu_e + e^+ \quad \overset{\gamma}{\longrightarrow} \quad \overset{44}{_{20}}\mathrm{Ca} + \nu_e + e^+ + \gamma$$

avec $E_0 = 1.157 \text{MeV}.$

Soit ${\cal M}$ une source de désintégration :

 \Rightarrow Cône Compton \mathcal{C} :

 $\begin{array}{l} \text{Sommet}: \ V_1 \text{;} \\ \text{Axe}: \ \Delta = \overrightarrow{V_2 V_1} \text{;} \\ \text{Angle}: \ \theta = \arccos \left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)} \right) \text{;} \end{array}$

Propriété : M appartient à la surface de C.

⇒ Intersection LOR/Cône : Précision dans la détection de la position de désintégration.

Challenge : Reconstruire l'image à partir d'un signal 3γ continu.

Etat de l'art : Image Reconstruction for 3γ PET Imaging - D.Giovagnoli

 \Rightarrow Reconstruction 3γ comme un problème **TOF-PET** à cristaux.

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

 \Rightarrow : Inclusion du 3^{ème} γ prometteuse

FIGURE – Thèse de D.Giovagnoli

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

 \Rightarrow : Inclusion du 3^{ème} γ prometteuse

Limites des travaux :

- Réglage de $\sigma \leftarrow$ la connaissance de la source d'émission ;
- Hypothèse d'un σ fixe;

FIGURE – Thèse de D.Giovagnoli

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

 \Rightarrow : Inclusion du 3^{ème} γ prometteuse

Limites des travaux :

- Réglage de $\sigma \leftarrow$ la connaissance de la source d'émission ;
- Hypothèse d'un σ fixe;
- Discrétisation virtuelle de l'espace de détection ;

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

 \Rightarrow : Inclusion du 3^{ème} γ prometteuse

Limites des travaux :

- Réglage de $\sigma \leftarrow$ la connaissance de la source d'émission ;
- Hypothèse d'un σ fixe;
- Discrétisation virtuelle de l'espace de détection ;
- Seuls les cas 3γ sont étudiés.

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

 \Rightarrow : Inclusion du 3^{ème} γ prometteuse

Limites des travaux :

- Réglage de $\sigma \leftarrow$ la connaissance de la source d'émission ;
- Hypothèse d'un σ fixe;
- Discrétisation virtuelle de l'espace de détection ;
- Seuls les cas 3γ sont étudiés.

Proportions des évènements :

$$\Rightarrow$$
 $\boxed{3\gamma~\sim 10\%}$, $2\gamma~\sim 50\%$ et $1\gamma~\sim 40\%$

Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

$3\gamma \sim 10\%, \ \mathbf{2\gamma} \sim \mathbf{50\%} \ \mathrm{et} \ \mathbf{1\gamma} \sim \mathbf{40\%}$

$3\gamma \sim 10\%, \ \mathbf{2\gamma} \sim \mathbf{50\%} \ \mathrm{et} \ \mathbf{1\gamma} \sim \mathbf{40\%}$

Objectif général :

 \Rightarrow Etude et mise et œuvre d'algorithmes de reconstruction pour l'imagerie 3γ proposée par la caméra XEMIS2.

$3\gamma \sim 10\%, \ \mathbf{2\gamma} \sim \mathbf{50\%} \ \mathrm{et} \ \mathbf{1\gamma} \sim \mathbf{40\%}$

Objectif général :

 \Rightarrow Etude et mise et œuvre d'algorithmes de reconstruction pour l'imagerie 3γ proposée par la caméra XEMIS2.

Méthodologie :

- Formulation d'un algorithme MLEM intégrant
 - le milieu continu de l'espace de détection LXe;
 - le traitement des 3 types d'événements i.e. $1\gamma,~2\gamma$ ou 3γ
- Développement d'une méthode de régularisation pour les images que nous obtiendrons ;

- Données brutes triées \Rightarrow sous-échantillonage **et** perte d'informations;
- Augmenter la finesse de l'échantillonage \Rightarrow nombre de classes \gg nombre d'évènements.

- Données brutes triées \Rightarrow sous-échantillonage **et** perte d'informations;
- Augmenter la finesse de l'échantillonage \Rightarrow nombre de classes \gg nombre d'évènements.

Algorithme List-Mode MLEM : Parra and Barrett [1998]

 $y_i = \{0, 1\} \quad \forall i \in [\![1, I]\!]$

 \Rightarrow Liste de N évènements détectés \equiv données { spatiales, temporelles, énergie, ... }

- Données brutes triées \Rightarrow sous-échantillonage **et** perte d'informations;
- Augmenter la finesse de l'échantillonage \Rightarrow nombre de classes \gg nombre d'évènements.

Algorithme List-Mode MLEM : Parra and Barrett [1998]

 $y_i = \{0, 1\} \quad \forall i \in [\![1, I]\!]$

- \Rightarrow Liste de N évènements détectés \equiv données { spatiales, temporelles, énergie, ... }
- \Rightarrow Un évènement $\mathbf{n} \in [\![1,N]\!]$ détecté $\Rightarrow y_{i_n} = 1$

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0 \\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum_{i \in \llbracket 1, I \rrbracket} A_{ij}} \sum_{\boldsymbol{n} \in \llbracket 1, N \rrbracket} A_{i_n j} \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{i_n j'} \lambda_{j'}^{(t)} + \overline{r}_{i_n} + \overline{s}_{i_n}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

$$\lambda_j^{(t+1)} = \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_j(\delta_n) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in [\![1,J]\!]$$

avec

$$\lambda_{j}^{(t+1)} = \lambda_{j}^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_{j}(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_{j}(\delta_{n}) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_{n}) \lambda_{j'}^{(t)} + \varepsilon(\delta_{n})} \quad \forall j \in [\![1,J]\!]$$

avec

$\delta\,$ variable d'intégration associée à une détection ;

$$\lambda_{j}^{(t+1)} = \lambda_{j}^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_{j}(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_{j}(\delta_{n}) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_{n}) \lambda_{j'}^{(t)} + \varepsilon(\delta_{n})} \quad \forall j \in [\![1,J]\!]$$

avec

- $\delta\,$ variable d'intégration associée à une détection ;
- $\mathcal L$ le domaine des détections donné par :

$$\lambda_j^{(t+1)} = \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_j(\delta_n) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in [\![1,J]\!]$$

avec

 $\delta\,$ variable d'intégration associée à une détection ;

 $\mathcal L$ le domaine des détections donné par :

 1γ : Un cône Compton $E_0 = 0.511$ MeV ou $E_0 = 1.157$ MeV;

$$\lambda_j^{(t+1)} = \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_j(\delta_n) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in [\![1,J]\!]$$

avec

 $\delta\,$ variable d'intégration associée à une détection ;

 \mathcal{L} le domaine des détections donné par :

 1γ : Un cône Compton $E_0 = 0.511 \text{MeV}$ ou $E_0 = 1.157 \text{MeV}$;

 2γ : Deux cas possibles

- Une LOR i.e. $2 \times E_0 = 0.511 \text{MeV}$;
- Une intersection de cônes : $E_0 = 0.511 \text{MeV}$ et $E_0 = 1.157 \text{MeV}$;

$$\lambda_j^{(t+1)} = \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in [\![1,N]\!]} A_j(\delta_n) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in [\![1,J]\!]$$

avec

 $\delta\,$ variable d'intégration associée à une détection ;

 \mathcal{L} le domaine des détections donné par :

- 1γ : Un cône Compton $E_0 = 0.511 \text{MeV}$ ou $E_0 = 1.157 \text{MeV}$;
- 2γ : Deux cas possibles
 - Une LOR i.e. $2 \times E_0 = 0.511 \text{MeV}$;
 - Une intersection de cônes : $E_0 = 0.511 \text{MeV}$ et $E_0 = 1.157 \text{MeV}$;

 3γ : Combinaison LOR/cône Compton.

$$\lambda_{j}^{(t+1)} = \lambda_{j}^{(t)} \times \underbrace{\frac{1}{\int_{\delta \in \mathcal{L}} A_{j}(\delta) \mathrm{d}\delta}}_{=s_{j}} \sum_{n \in [\![1,N]\!]} A_{j}(\delta_{n}) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_{n}) \lambda_{j'}^{(t)} + \varepsilon(\delta_{n})} \quad \forall j \in [\![1,J]\!]$$

avec

 δ variable d'intégration associée à une détection ;

 \mathcal{L} le domaine des détections donné par :

 1γ : Un cône Compton $E_0 = 0.511$ MeV ou $E_0 = 1.157$ MeV;

 2γ : Deux cas possibles

- Une LOR i.e. $2 \times E_0 = 0.511 \text{MeV}$;
- Une intersection de cônes : $E_0 = 0.511 \text{MeV}$ et $E_0 = 1.157 \text{MeV}$;
- 3γ : Combinaison LOR/cône Compton.

Image de sensibilité - cas 2γ LOR

Reconstruction Compton avec LM-MLEM : Y.Feng, Maxim et al. [2015].

Soit M un point d'émission appartenant au voxel j dans le champs de vue

Image de sensibilité - cas 2γ LOR

Soit M un point d'émission appartenant au voxel j dans le champs de vue :

$$\begin{split} s(M) &:= \int_{\theta=0}^{\pi} \int_{\varphi=0}^{\frac{\pi}{2}} p_i \Big(\frac{1}{|\cos(\varphi)|} \Big(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, I1)^2 - \widetilde{O}P^2} - Q \Big) \Big) \times p_i \Big(\frac{1}{|\cos(\varphi)|} \Big(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, J2)^2 - \widetilde{O}P^2} - Q \Big) \Big) d\varphi \\ &+ \int_{\varphi=-\frac{\pi}{2}}^{0} p_i \Big(\frac{1}{|\cos(\varphi)|} \Big(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, I2)^2 - \widetilde{O}P^2} - Q \Big) \Big) \times p_i \Big(\frac{1}{|\cos(\varphi)|} \Big(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, J1)^2 - \widetilde{O}P^2} - Q \Big) \Big) d\varphi d\theta \\ &\widetilde{O}P := \sin(\theta) \, \widetilde{O} \, M, \ Q := \sqrt{R_1^2 - \widetilde{O}P^2}. \end{split}$$
e.g. $\varphi \in [0, \frac{\pi}{2}[$:

$$\begin{split} R_{\text{out}}^{2\gamma}(\varphi, I1) &:= \begin{cases} R_2 & \text{si} & \varphi \in [0, \varphi_{\text{min}}] \\ R_1 & \text{si} & \varphi \in [\varphi_{\text{max}}, \frac{\pi}{2}[\\ \widetilde{O} M + \cot(\varphi) \left(\frac{H}{2} - O\widetilde{O}\right) & \text{si} & \varphi \in [\varphi_{\text{max}}, \frac{\pi}{2}[\\ \widetilde{O} M_1 + \cot(\varphi) \left(\frac{H}{2} - O\widetilde{O}\right) & \text{si} & \varphi \in [\varphi_{\text{min}}, \varphi_{\text{max}}] \end{cases} \\ \varphi_{\text{min}} &:= \arctan\left(\frac{H/2 - O\widetilde{O}}{\widetilde{O}C_i - \widetilde{O}M}\right), \varphi_{\text{max}} &:= \arctan\left(\frac{H/2 - O\widetilde{O}}{\widetilde{O}N_{I1} - \widetilde{O}M}\right) \\ R_{\text{out}}^{2\gamma}(\varphi, J2) &:= \begin{cases} R_2 & \text{si} & \varphi \in [0, \varphi_{\text{min}}] \\ R_1 & \text{si} & \varphi \in [\varphi_{\text{max}}, \frac{\pi}{2}[\\ \cot(\varphi) \left(\frac{H}{2} + O\widetilde{O}\right) - \widetilde{O}M & \text{si} & \varphi \in]\varphi_{\text{min}}, \varphi_{\text{max}}] \end{cases} \\ \varphi_{\text{min}} &:= \arctan\left(\frac{H/2 + O\widetilde{O}}{\widetilde{O}C_j + \widetilde{O}M}\right), \varphi_{\text{max}} &:= \arctan\left(\frac{H/2 + O\widetilde{O}}{\widetilde{O}N_{J2} + \widetilde{O}M}\right) \end{split}$$

M.Latif (LS2N-SiMS & CRCI2NA-Nuclear oncology)

Image de sensibilité - cas 1γ

Soit M un point d'émission appartenant au voxel j dans le champs de vue

Image de sensibilité - cas 1γ

Soit M un point d'émission appartenant au voxel j dans le champs de vue :

$$\begin{split} s(M) &:= \int_{\theta=0}^{2\pi} \left[\int_{\varphi=0}^{\frac{\pi}{2}} \int_{v=R_{\mathrm{in}}}^{R_{\mathrm{out}}^{1}(\varphi,I1)} f(\varphi,\theta,v) \ C_{I1}(v,\theta,\varphi) \mathrm{d}v \mathrm{d}\varphi + \int_{\varphi=\frac{\pi}{2}}^{\pi} \int_{v=R_{\mathrm{in}}}^{R_{\mathrm{out}}^{1}(\varphi,J1)} f(\varphi,\theta,v) \ C_{J1}(v,\theta,\varphi) \mathrm{d}v \mathrm{d}\varphi \\ &+ \int_{\varphi=-\frac{\pi}{2}}^{0} \int_{v=R_{\mathrm{in}}}^{R_{\mathrm{out}}^{1}(\varphi,I2)} f(\varphi,\theta,v) \ C_{I2}(v,\theta,\varphi) \mathrm{d}v \mathrm{d}\varphi + \int_{\varphi=-\pi}^{-\frac{\pi}{2}} \int_{v=R_{\mathrm{in}}}^{R_{\mathrm{out}}^{1}(\varphi,J2)} f(\varphi,\theta,v) \ C_{J2}(v,\theta,\varphi) \mathrm{d}v \mathrm{d}\varphi \right] \mathrm{d}\theta \\ &\quad f(\varphi,\theta,v) := p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{v^2 - \sin^2(\theta) \widetilde{O} M^2} - \sqrt{R_{\mathrm{in}}^2 - \sin^2(\theta) \widetilde{O} M^2} \right) \right) \\ &\quad C_X(v,\theta,\varphi) := \int_{\beta=-\pi}^{\pi} K(\beta|E_0) \int_{\omega=0}^{2\pi} \int_{\rho=0}^{\rho\max(\beta,\varphi,v,X)} g(\omega,\rho,\beta,v,\theta,\varphi) \mathrm{d}\rho \mathrm{d}\omega \mathrm{d}\beta \\ g(\omega,\rho,\beta,v,\theta,\varphi) := p_i' \left(\sqrt{\left(\rho - v\cos(\theta)\cos(\varphi)\right)^2 + \left(\rho\tan(\beta)\cos(\omega) - v\sin(\theta)\cos(\varphi)\right)^2 + \left(\rho\tan(\beta)\sin(\omega) - v\sin(\varphi)\right)^2} \right) \\ &\quad K(\beta|E_0) := \frac{r_e}{2} \left(\frac{E_1}{E_0} \right)^2 \left(\frac{E_1}{E_0} + \frac{E_0}{E_1} + \sin^2(\beta) \right) \text{ avec } E_1 = E_0 - E_C \end{split}$$

Travaux de thèse

Contexte général : XEMIS

Modèle TEP et algorithme MLEM

XEMIS2, imagerie 3γ et méthode pseudo-TOF

Positionnement des travaux de thèse

Suite des travaux

Modélisation de l'image de sensibilité :

- Cas $3\gamma \equiv$ Emissions indépendantes 1γ et 2γ LOR;
- 2γ Cônes.
- ⇒ Calcul de l'image de sensibilité :
 - Evaluation des intégrales multiples à l'aide de calcul Monte Carlo.

Modélisation de l'image de sensibilité :

- Cas $3\gamma \equiv$ Emissions indépendantes 1γ et 2γ LOR;
- 2γ Cônes.
- ⇒ Calcul de l'image de sensibilité :
 - Evaluation des intégrales multiples à l'aide de calcul Monte Carlo.

Développement et évaluation de l'algorithme LM-MLEM :

Intégrer les 4 types d'événements dans la méthode de reconstruction ;

- Formulation de l'équation du maximum de vraisemblance pour les cas $1, 2, 3\gamma$;
- Dérivation de l'algorithme dédié et implémentation dans le logiciel CASTOR, Merlin et al. [2018];
- Evaluation de l'algorithme avec des données simulées obtenues avec l'outil Monte-Carlo GATE.

Objectif : Conférence Fully3D 2023 - Soumission Janvier 2023

Vous remerciant pour votre attention

Cherry, S. R., Sorenson, J. A., and Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.

- Cussonneau, J.-P., Abaline, J. M., Acounis, S., Beaupere, N., Beney, J. L., Bert, J., Bouvier, S., Briend, P., Butterworth, J., Carlier, T., Chanal, H., Chérel, M., Dahoumane, M., Diglio, S., Gallego-Manzano, L., Giovagnoli, D., Idier, J., Kraeber-Bodere, F., Lefebvre, F., Lemaire, O., Le Ray, P., Manen, S., Masbou, J., Mathez, H., Morteau, E., Pillet, N., Royer, L., Staempflin, M., Stutzmann, J. S., Vandaele, R., Virone, L., Visvikis, D., Xing, Y., Zhu, Y., and Thers, D. (2017). 3gamma medical imaging with a liquid xenon compton camera and 44sc radionuclide. Acta Physica Polonica B, 48(10).
- Giovagnoli, D., Bousse, A., Beaupere, N., Canot, C., Cussonneau, J.-P., Diglio, S., Iborra Carreres, A., Masbou, J., Merlin, T., Morteau, E., Xing, Y., Zhu, Y., Thers, D., and Visvikis, D. (2021). A pseudo-tof image reconstruction approach for three-gamma small animal imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):826–834.
- Grignon, C., Barbet, J., Bardiès, M., Carlier, T., Chatal, J., Couturier, O., Cussonneau, J., Faivre, A., Ferrer, L., Girault, S., Haruyama, T., Le Ray, P., Luquin, L., Lupone, S., Métivier, V., Morteau, E., Servagent, N., and Thers, D. (2007). Nuclear medical imaging using β+γ coincidences from 44sc radio-nuclide with liquid xenon as detection medium. <u>Nuclear Instruments and</u> <u>Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment</u>, 571(1):142–145. Proceedings of the 1st International Conference on Molecular Imaging Technology.

Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography, 8(2):306-316.

- Maxim, V., Lojacono, X., Hilaire, E., Krimmer, J., Testa, E., Dauvergne, D., Magnin, I., and Prost, R. (2015). Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3d reconstruction of compton camera images. Physics in Medicine and Biology, 61(1):243–264.
- Merlin, T., Stute, S., Benoit, D., Bert, J., Carlier, T., Comtat, C., Filipovic, M., Lamare, F., and VISVIKIS, D. (2018). CASToR : a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Physics in Medicine and Biology, 63(18) :185005.

Parra, L. C. and Barrett, H. H. (1998). List-mode likelihood : Em algorithm and image quality estimation demonstrated on 2-d pet. IEEE Transactions on Medical Imaging, 17 :228-235.

Vardi, Y., Shepp, L. A., and Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389) :8-20.

XEMIS : Grignon et al. [2007]

- Développer une caméra Compton au xénon liquide (LXe);
- Nouvelle technique d'imagerie à 3 photons (3γ) .

Projet en 3 phases :

- XEMIS1 : Prototype de télescope Compton au LXe de petite dimension ;
- XEMIS2 : Caméra pré-clinique cylindrique corps entier ;
- XEMIS3 : Caméra clinique cylindrique corps entier.

Inscrit dans l'écosystème Nantais : cyclotron ARRONAX, INSERM, CRCI2NA, LS2N.

 \Rightarrow Efforts consacrés à la **conception expérimentale**.

 $FIGURE - Principe de l'imagerie <math>3\gamma$ dans XEMIS

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = rgmax_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$$

 \Rightarrow Déterminer $\widehat{\lambda}^{\rm ML}$ pour un modèle probabiliste dépendant de **données latentes** ;

Données observées :
$$(y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$$
;
Données latentes : $(x_{ibj})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$ s.t. $x_{ibj} \sim \mathcal{P}(\overline{x}_{ibj})$ avec $\overline{x}_{ibj} = A_{ibj}\lambda_j$.

$$\begin{pmatrix} \boldsymbol{\lambda}^{(0)} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket$$

Propriétés :

- Convergence vers un $\widehat{\lambda}^{\mathrm{ML}}$;
- Positivité des densités (λ_j) obtenues.

XEMIS2 : caméra Compton cylindrique

Xénon liquide : espace continu de scintillation/ionisation ; Scandium-44 : émetteur (β^+, γ)

$${}^{44}_{21}\mathrm{Sc} \xrightarrow{\beta^+} {}^{44}_{20}\mathrm{Ca}^* +
u_e + e^+ \xrightarrow{\gamma} {}^{44}_{20}\mathrm{Ca} +
u_e + e^+ + \gamma$$

avec $E_0 = 1.157$ MeV.

Soit ${\cal M}$ une source de désintégration :

\Rightarrow Cône Compton C :

 $\begin{array}{l} \text{Sommet}: \ V_1 \ ; \\ \text{Axe}: \ \Delta = \overrightarrow{V_2 V_1} \ ; \\ \text{Angle}: \ \theta = \arccos \left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)} \right) ; \end{array}$

Propriété : M appartient à la surface de C.

⇒ Intersection LOR/Cône : Précision dans la détection de la position de désintégration.

Challenge : Reconstruire l'image à partir d'un signal 3γ continu.

Etat de l'art : Image Reconstruction for 3γ PET Imaging - D.Giovagnoli

 \Rightarrow Reconstruction 3γ comme un problème **TOF-PET** à cristaux.

Méthode pseudo-TOF Giovagnoli et al. [2021] $\Rightarrow \mathcal{N}(v, \sigma^2)$

- v : Intersection LOR/Cône;
- σ : pseudo-TOF standard deviation.
- \Rightarrow Inclusion du $3^{\grave{\mathbf{eme}}}$ γ prometteuse

Limites des travaux :

- Réglage de $\sigma \leftarrow$ la connaissance de la source d'émission ;
- Hypothèse d'un σ fixe;
- Discrétisation virtuelle de l'espace de détection ;
- Seuls les cas 3γ sont étudiés.

Proportions des évènements :

$$\Rightarrow$$
 3γ $\sim 10\%$, 2γ $\sim 50\%$ et 1γ $\sim 40\%$

- Données brutes triées \Rightarrow sous-échantillonage **et** perte d'informations;
- Augmenter la finesse de l'échantillonage \Rightarrow nombre de classes \gg nombre d'évènements.

Algorithme List-Mode MLEM : Parra and Barrett [1998]

 $y_i = \{0, 1\} \quad \forall i \in [\![1, I]\!]$

- \Rightarrow Liste de N évènements détectés \equiv données { spatiales, temporelles, énergie, ... }
- \Rightarrow Un évènement $\pmb{n} \in [\![1,N]\!]$ détecté $\Rightarrow y_{i_{\pmb{n}}} = 1$

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0 \\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum_{i \in \llbracket 1, I \rrbracket} A_{ij}} \sum_{\boldsymbol{n} \in \llbracket 1, N \rrbracket} A_{i_n j} \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{i_n j'} \lambda_{j'}^{(t)} + \overline{r}_{i_n} + \overline{s}_{i_n}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

$$\lambda_{j}^{(t+1)} = \lambda_{j}^{(t)} \times \underbrace{\frac{1}{\int_{\delta \in \mathcal{L}} A_{j}(\delta) \mathrm{d}\delta}}_{=s_{j}} \sum_{n \in [\![1,N]\!]} A_{j}(\delta_{n}) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_{n}) \lambda_{j'}^{(t)} + \varepsilon(\delta_{n})} \quad \forall j \in [\![1,J]\!]$$

avec

 $\delta\,$ variable d'intégration associée à une détection ;

 $\mathcal L$ le domaine des détections donné par :

 1γ : Un cône Compton $E_0 = 0.511$ MeV ou $E_0 = 1.157$ MeV;

 2γ : Deux cas possibles

- Une LOR i.e. $2 \times E_0 = 0.511 \text{MeV}$;
- Une intersection de cônes : $E_0 = 0.511 \text{MeV}$ et $E_0 = 1.157 \text{MeV}$;

 3γ : Combinaison LOR/cône Compton.